Journal of Fluorine Chemistry, 35 (1987) 531-535 Received: June 30, 1986; accepted: July 23, 1986

ON THE EXISTENCE OF A CrF4 O.SbF5 ADDUCT

WILLIAM W. WILSON AND KARL O. CHRISTE

Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91303 (U.S.A.)

SUMMARY

 $\mathrm{CrF}_4\mathrm{O}$ is capable of forming a stable adduct with SbF_5 . Based on its low-temperature Raman spectrum, this adduct has a predominantly covalent, fluorine bridged structure, similar to that of $\mathrm{MoF}_4\mathrm{O}\cdot\mathrm{SbF}_5$.

INTRODUCTION

In a recent paper the amphoteric nature of $\mathrm{CrF}_4\mathrm{O}$ has been investigated. It was shown that $\mathrm{CrF}_4\mathrm{O}$ is a very strong Lewis acid, but only a rather weak Lewis base and does not form a stable adduct with AsF_5 at temperatures as low as $-78\,^\circ\mathrm{C}$ [1]. In view of the fact that the closely related $\mathrm{MoF}_4\mathrm{O}$, $\mathrm{WF}_4\mathrm{O}$ and $\mathrm{ReF}_4\mathrm{O}$ molecules can form stable 1:1 adducts with SbF_5 [2], it was interesting to study the interaction between $\mathrm{CrF}_4\mathrm{O}$ and SbF_5 .

EXPERIMENTAL

<u>Materials.</u> Literature methods were used for the synthesis of CrF_4O [1] and the drying of the HF solvent [3]. SbF_5 (Ozark Mahoning) was distilled prior to its use.

0022-1139/87/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

Apparatus. Volatile materials were manipulated in stainless-steel vacuum lines equipped with Teflon-FEP U-traps, 316 stainless steel bellows-seal or Teflon-PFA (Fluoroware, Inc.) valves, and a Heise Bourdon tube-type pressure gauge [4]. The vacuum lines and other hardware employed were passivated with ClF₃ and HF. Nonvolatile or low volatility materials were handled in the dry nitrogen atmosphere of a glove-box. Raman spectra were recorded on a Spex Model 1403 spectrophotometer using the 647.1-nm exciting line of a Kr ion laser. The sample was contained in a sealed 1 mm o.d. quartz capillary, and the spectra were recorded at -140°C using a previously described device [5].

Reaction of CrF40 with SbF5. A passivated 0.5" o.d. Teflon-FEP U-tube, closed by two valves, was loaded in the dry-box with ${\rm SbF}_5$ (0.89 mmol). The U-tube was connected to the vacuum line and HF (1.08g) and CrF_4O (0.31 mmol) were condensed in at -196°C. The contents of the tube were warmed to room temperature resulting in a light red solution. All material volatile at room temperature was pumped off and passed through a -78° and a -196°C trap. Nothing was trapped at -78°C, but the -196°C trap contained the HF solvent. The residue was a dark red-brown liquid which upon heating to 55°C for 15 hr in a dynamic vacuum condensed on the colder parts of the tube. The volatile material trapped at -78°C was white and consisted of SbF5. The condensate (143 mg) consisted of dark red droplets and crystals. The appearance of some liquid material can be accounted for by the fact that, based on the material balance, the condensate still contained 31 mg (0.14 mmol) of ${\rm SbF}_5$ in excess over that required for the 1:1 adduct CrF_AO .SbF₅. The crystals were characterized by low-temperature Raman spectroscopy but were not suitable for a crystal structure determination because of twinning or disorder.

532

RESULTS AND DISCUSSION

 $\mathrm{CrF}_4\mathrm{O}$, when combined with an excess of SbF_5 in anhydrous HF solution, forms after removal of the solvent a dark brownred liquid adduct. In a dynamic vacuum at 55°C, most of the excess SbF_5 can be pumped off. As the $\mathrm{CrF}_4\mathrm{O}\cdot\mathrm{SbF}_5$ mol ratio approaches 1:1, dark red crystals are obtained which are stable at 55°C. Attempts to determine their structure by single crystal x-ray diffraction techniques failed because of twinning or disorder. However, their low-temperature Raman spectrum (see Fig.1) indicates that their structure $\mathrm{MoF}_4\mathrm{O}\cdot\mathrm{SbF}_5$ and $\mathrm{WF}_4\mathrm{O}\cdot\mathrm{SbF}_5$ adducts [2], (see Table 1). The minor differences

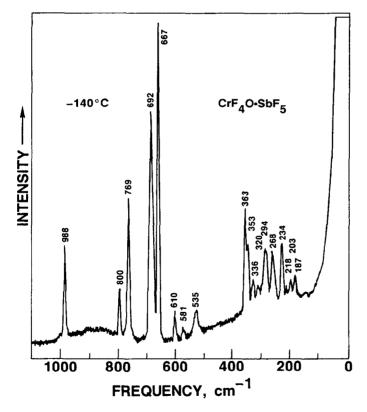


Fig.1. The Raman Spectrum of $CrF_4 O \cdot SbF_5$ at -140°.

Raman Spectrun WF ₄ 0·SbF ₅ and	Raman Spectrum of ${\rm CrF}_4{\rm O}\cdot{\rm SbF}_5$ Compared to Those of ${\rm MoF}_4{\rm O}\cdot{\rm SbF}_5$, ${\rm WF}_4{\rm O}\cdot{\rm SbF}_5$ and Their Parent Molecules. Observed frequencies (cn	mpared to Thos cules. Observeć	e of ${\rm MoF}_4^{}{\rm O}\cdot{\rm SbF}_5$,] frequencies (cm $^{-1}$) and relative intensities	(cm^{-1}) and	relative int	tensities
WF40.SbF5 [2]	MoF ₄ 0.SbF ₅ [2]	CrF40.SbF5	WF40 [2]	MoF ₄ 0 [2]	CrF ₄ 0 [1]	SbF ₅ [2]
1061 vs	1047 s	988 (3)	1058 vs	1042 s	ш 666	
758 mw	766 mw	800 (1.5)	744 m	740 m	789 mw	
		(769 (4.4)			(718 sh	
710 s	704 m	692 (7.1)	728 w	721 mw	704 m	718 s
670 s	675 s	667 (10)	687 vw	_	(692 m	670 vs
			669 vw, sh	688 s	666 mw	
	621 w	610 (0.9)	663 mw		650 vs	
556 vw	578 w	581 (0.3)	563 m	571 w	_	
		535 (0.9)	532 vw	529 w	528 w	
			523 w	506 vw	517 vvw	
		363 (3.2)	388 w		377 w	
		353 (1)	367 vw		350 mw	
334 w	338 w	336 (0.7)	330 mw	333 m		349 VW
		320 (0.3)	318 m, sh			
312 w	314 w	294 (1.5)	314 s	309 ms	293 w	
279 w		268 (1.5)	265 w	275 w	273 w	268 m
242 vw	233 w	234 (1.6)	242 mw	222 mw		231 mw
		218 (0.2)	215 mw			
		203 (0.4)	151 mw			
133 vw		187 (0.6)	135 w		188 vw	189 mw

534

TABLE 1

In the observed spectra can be attributed to (1) the low temperature at which the $\mathrm{CrF}_4\mathrm{O}\cdot\mathrm{SbF}_5$ spectrum was recorded which may cause some additional splittings, (11) the mass and force constant differences between Cr, Mo, and W, and (111) the increasing ionicity of the metal-F bonds from Cr to W which causes the relative Raman intensity of the metal oxygen vibrations to increase with respect to those of the metal-fluorine vibrations. Thus, the above results show that $\mathrm{CrF}_4\mathrm{O}$ is also capable of forming a stable adduct with SbF_5 and that the resulting adduct has a mainly covalent, fluorine bridged structure similar to that of $\mathrm{MoF}_4\mathrm{O}\cdot\mathrm{SbF}_5$ [2].

ACKNOWLEDGEMENTS

The authors are grateful to Drs. R. Bougon, C. Schack and L. Grant and Mr. R. Wilson for their help, to Dr. R. Bau for the examination of the crystals by x-ray diffraction, and to the Office of Naval Research and the Army Research Office for financial support.

REFERENCES

- 1 K. O. Christe, W. W. Wilson and R. A. Bougon, Inorg. Chem., in press.
- 2 J. Fawcett, J. H. Holloway and D. R. Russell, J. C. S. Dalton, (1981) 1212.
- 3 K. O. Christe, W. W. Wilson and C. J. Schack, J. Fluorine Chem., 11, (1978) 71.
- 4 K. O. Christe, R. D. Wilson and C. J. Schack, Inorg. Synthesis, 24, (1986) 3.
- 5 F. A. Miller and B. M. Harney, Appl. Spectrosc., 23, (1969) 8.